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Al~raet--A method for calculating the density autocorrelation (p'(x)p'(x + r)) for a homogeneous 
particle-fluid system in both physical and Fourier transform space has been developed. The density 
autocorrelation was related to two quantities, the Overlap function which is defined as the volume of 
intersection of two spheres as a function of the separation distance and the radial distribution function 
(RDF) of the particles. In dimensionless co-ordinates, the parameter that characterizes the density 
autocorrelation is the volume fraction of particles, ct I , or equivalently the dimensionless mean separation 
distance (normalized by the particle diameter), 2 = 3 ~  ). For an isotropic randomly distributed 
system of particles, the density autocorrelation was observed to oscillate with the correlation distance r, 
with a wavelength that was proportional to 2. The Fourier transform of the autocorrelation likewise 
oscillated with the wavenumber k, however the effect of changes in the particle volume fraction was limited 
to the first peak only. Subsequent peaks were more closely associated with the Overlap function. 

The results for the density autocorrelation were extended to a particle-fluid system which experienced 
an asymptotically large pressure gradient. This initially produced a uniform relative motion between the 
two fields. In this limit, other higher-order moments such as the Reynolds stress can be related to the 
density autocorrelation in a straightforward manner. Moreover the spectral shapes of all moments collapse 
onto the density autocorrelation spectrum in this limit. It was pointed out that the uniform relative motion 
will eventually become unstable because of hydrodynamic forces on the particles induced by the relative 
motion. This effect was estimated by introducing a mildly attractive force into the RDF. The results 
demonstrated that the induced hydrodynamic force promoted a shift in the density spectrum toward small 
k (large scale) indicating an alternative mechanism for growth in the integral length scale. 
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I N T R O D U C T I O N  

The  impac t  a par t i cu la te  phase  has on turbulence is a p rob lem of  significance to a var ie ty  o f  fields 
including a tmospher ic  sciences, engineering and advanced  mater ia ls  processing,  amongs t  many  
others.  P rehaps  the mos t  general  a p p r o a c h  to model ing  par t ic le- laden systems has been to descr ibe 
the phases  separa te ly  with var iables  that  have been condi t iona l ly  averaged  over  each phase  
separa te ly  (see Ishii  1975 for  a comprehens ive  review of  this subject). One ma jo r  obstacle  with 
classical  app roaches  to two-phase  models  is tha t  they are based on a single length scale (e.g. the 
integral  scale o f  the turbulence) ,  while it is well known  tha t  turbulence is inherent ly  a mult i -scale  
phenomenon .  The  er ror  associa ted  with this t runca t ion  is pe rhaps  to lerable  in s ingle-phase flow 
models  (e.g. k - E  model )  because the dynamics  o f  spectral  energy t ransfer  quickly a p p r o a c h  
self-similari ty under  many  c i rcumstances  (e.g. Besnard et al. 1990, 1994), however  the in t roduc t ion  
o f  par t ic les  will, by necessity, impose  a length scale on the system (the par t ic le  size), potent ia l ly  
d i s rup t ing  the scaling required to achieve self s imilari ty.  

A na tu ra l  extension o f  cur rent  mul t iphase  flow models  is to in t roduce  two-po in t  statistics,  or  
equivalent ly  the energy spec t rum in Four i e r  t r ans form space. This more  general  representa t ion  o f  
a tu rbulen t  par t icu la te  system will a l low the large scale tu rbulen t  mot ion  to evolve independent ly  
o f  the behav ior  at  the par t ic le  scales, thereby relaxing the assumpt ions  required by s ingle-point  
theories,  at  the cost  o f  in t roduc ing  a much more  compl ica ted  stat ist ical  quan t i ty  to t ranspor t .  
Spectra l  analysis  o f  s ingle-phase turbulence is now a ma tu re  topic,  (see, for example ,  Hinze 1975; 
Batchelor  1955), however  that  level o f  unders tand ing  has not  been reached for  par t ic le- laden flows. 
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For example, the shape (or even existence) of a self-similar spectrum for multiphase turbulence has 
yet to be established. The present study demonstrates a new methodology for calculating spectral 
statistics for particle-laden flows in a fashion that is analogous to the procedure used for 
single-phase turbulence. In the course of the development, we shall identify several parameters that 
if measured either by experiment or simulation would provide important information regarding the 
spectral dynamics of particle-laden turbulent flows. 

Earlier studies in the literature have demonstrated that even a small volumetric concentration 
of particles can significantly modify the structure of turbulence in the suspending medium in a 
variety of flows including jets (e.g. Hetsroni & Sokolov 1971; Modaress et al. 1984; Tsuji et al. 
1988), pipe flows (e.g. Tsuji & Morikawa 1982; Tsuji et al. 1984) and particle-laden homogeneous 
turbulence (e.g. Parthasarathy & Faeth 1990). These experiments consistently demonstrated that 
the presence of particles altered the turbulent kinetic energy (per unit mass) and spectral 
distribution of that energy, though not necessarily in a consistent fashion. For example, it appears 
that small particles tend to reduce the energy in the suspending fluid while larger particles increase 
it. Gore & Crowe (1989) attempted to correlate these effects based on the ratio of the particle size 
to the turbulence integral length scale, however a more realistic representation based on a particle 
Reynolds number by Hetsroni (1989) appears to be more physically accurate. 

More recently, direct numerical simulations have been employed to further characterize the effect 
particles have on the turbulence in the suspending medium and vice versa. Deterministic 
Lagrangian simulations estimate the forces on each particle based on the local fluid velocity and 
pressure field (Maxey & Riley 1983) and then update the position and velocity of the particle with 
Newton's laws. Prehaps the most comprehensive calculation of this type is by Elghobashi & 
Truesdell (1992, 1993) who accounted for all possible forces in a decaying homogeneous turbulent 
field. They observed that the presence of particles in a gravitational field did increase the energy 
of the suspending fluid, at least for the parameter range considered. A number of simulations of 
forced particle-fluid systems by Squires & Eaton (1990, 1991) showed that (heavy) particles tended 
to collect in regions of high strain (low vorticity). They also included reverse coupling and showed 
that the spectral distribution of turbulent energy had been profoundly affected by the presence of 
particles. In all of the simulations, particles tended to increase the kinetic energy at small scales 
(large wavenumbers) at the expense of energy contained in large scales (small wavenumbers). This 
"pivoting" of the energy spectrum could potentially affect the integral scale of the mixture as well 
as the dissipation spectrum. It is important to note that these spectral studies only considered the 
energy of the fluid phase. A methodology for analyzing the contribution of the particulate phase 
to the total energy spectrum had not been developed. One objective of the present study is to 
develop a spectral description of a particle-laden turbulent flow field that includes both the fluid 
and particulate phases. 

Spectral analysis begins by defining correlations at two distinct points in the fluid. For example, 
the two-point Reynolds stress in an incompressible homogeneous fluid is defined as 
R(r) = u'(x)u'(x + r). Note that for a homogeneous system there is no explicit dependence on the 
position vector x. Fourier transforming R(r) then yields the familiar Reynolds stress spectrum. The 
question becomes, how can these definitions be generalized for a fluid system with discrete particles? 
One approach is to consider the particle-fluid system as a single pseudo-fluid with density variations 
occurring at the particle interfaces. This is analogous to continuum approximations used in earlier 
studies (Ishii 1975), however the formalism we propose does not introduce any averaging until the 
final step. In other words, the density field varies discontinuously at the particle interfaces. Because 
all points in the fluid and particulate phases are well-defined and equivalent, definitions of 
two-point correlations remain the same as they were for incompressible turbulence. One compli- 
cation of the pseudo-fluid analysis is two-point correlations can occur between points lying in: 
fluid-fluid, fluid-particle, particle-fluid, particle-particle (including correlations within a single 
particle), as depicted schematically in figure 1. This increases the bookkeeping somewhat, but poses 
no fundamental change from the incompressible case. 

To demonstrate this approach, we present a study of the density autocorrelation spectrum for 
a monodisperse system of particles. The density autocorrelation was chosen because earlier studies 
of variable-density flows (Besnard et al. 1985; Clark & Spitz 1994) have identified it as a critical 
statistical property in the evolution of turbulent energy, particularly in the presence of a body force 
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or mean pressure gradient. Furthermore the simple nature of the density field allows us to derive 
analytical expressions for the density autocorrelation that can be extended to more complex 
moments such as the turbulent energy spectrum. It will be shown that the density autocorrelation 
can be completely described by the radial distribution function (RDF) of the particles. In general, 
the RDF for a turbulent particle-fluid system must be evaluated from experiment or direct 
numerical simulation. For the purpose of describing the features of the density spectrum we have 
chosen the Percus-Yevick (PY) RDF for a hard-sphere system. 

The analysis for the density autocorrelation has also been extended to higher-order moments 
for the simple case of particle-fluid interpenetration at a uniform velocity. The relevance of 
this somewhat artificial flow is that it represents an important limit for particle-laden systems 
experiencing a strong pressure gradient. In this limit, several higher-order moments can be 
related to the density autocorrelation. The results provide insight into the instantaneous effect 
strong pressure gradients have on the spectral behavior of velocity correlations such as the 
Reynolds stress. 

P R E L I M I N A R Y  D E F I N I T I O N S  

This paper shall consider a particle--fluid system of total volume V containing N particles, each 
of radius a and volume Vp. The particles are assumed to be distributed homogeneously throughout 
the fluid (though not necessarily uniformly). The particulate and fluid phases are both incompress- 
ible, with densities Pl and P2, respectively (hereafter the subscript 1 shall refer to the particulate 
phase and the subscript 2 the fluid phase throughout). The system will be analyzed as a single 
"pseudo-fluid" with density variations occurring discontinuously at the particle interfaces. To 
distinguish the particulate phase from the fluid phase, it is therefore necessary to define a color 

~*~.~.~'., 
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Figure 1. Schematic of particle-fluid correlations contributing to the two-point density autocorrelation 
in two dimensions. The line segments represent the points x shown with a dark circle, and x + r for the 
four possible combinations; (la) particle-particle correlation (intra-particle), (lb) particle-particle corre- 
lation (inter-particle), (2) particle-fluid correlation, (3) fluid-particle correlation and (4) fluid-fluid 

correlation. 
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function that changes value depending on if a point lies within the particulate phase of fluid phase. 
We refer to the color functions as the fl-functions, and define them as follows 

everwhere within the particles 

everywhere within the fluid 

everywhere within the particles 

everywhere within the fluid 
[1] 

For a finite volume V which contains N particles, flj (x) is by definition 

where H is the Heaviside function, a is the particle diameter and x i is the location of the center 
of the ith particle. Because each point lies within either the fluid or particulate phases, we can define 
/32(x) as follows 

f l 2 ( x ) = l - f l i ( x ) = l - ~ H ( 2 - 1 x - x i l  [3] 

For the purpose of this discussion, averages will be defined in terms of ensembles, as shown below 
for an arbitrary fluctuating quantity ~b(x) 

1  j(x) 
= p j .  

where p represents an ensemble of realizations that are identical in terms of their gross features 
but differ in their microscopic detail, and thej  index identifies a particular realization. The deviation 
from that average is then given by, ~b'(x)-= $ ( x ) -  ~(x), where the j index is suppressed for 
convenience. For particle-fluid systems it is also convenient to define a density-weighted average 
a s  

47(x ) _ p (x)4, (x) 

and the deviation from the density-weighted average by q~"(x) = q~(x) - ~(x). Finally conditional 
averages (conditioned on being within the particle or fluid phases) are defined as 

~ , ( x ) =  fl '$(x) and ~32(x)= fl2~b(x) 
~I ~2 

where ~t I and ct 2 are the volume fractions of the particle and fluid phases, respectively. For the 
present homogeneous system the volume fractions are simply given by 

NVp NVp 
al = and a2 = 1 - 

V V 

DENSITY AUTOCORRELATI ON 

Mathematical Definition 
The present analysis considers the particle-laden fluid system to be a single pseudo-fluid with 

sharp density fluctuations at particle interfaces, therefore the two-point density autocorrelation is 
identical to that as for any variable-density flow. For a homogeneous system we define the density 
autocorrelation as follows 

B(r) =- p'(x)p'(x + r) [4] 

The single point correlation, determined from [4] by setting r = 0, is given by the following equation 
derived originally by Collins (1992) 

B = p'(x)p'(x) = ~ ~2(P~ - P2) 2 [5] 
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For the sake of distinguishing single-point and two-point variables, single-point quantities are 
designated by variables without arguments while two-point quantities are shown with an explicit 
reference to the dependence on the separation vector r. Equation (5) implies a direct relationship 
between the second order moment, B, and the volume fractions which are first order moments. The 
reduction in order is caused by the simplistic nature of the density fluctuations. More specifically, 
the density can only take on one of two values, p, or P2, therefore fluctuations in the density are 
entirely controlled by the volume fractions of each phase. Unfortunately this simplification cannot 
be generalized to two-point moments. 

It is convenient to begin by defining B(r) in terms of the ]/-functions defined in the previous 
section. Consider the density at a point x, which is given by 

Averaging then yields 

p(x) = ]/l(x)p~+]/2(x)p2 

~ ( x )  = ~l ( x )p l  + ~2(x)p2 

Upon subtracting the two expressions we arrive at the following definition of the density fluctuation 

p'(x) = ]/', (x)p, + ]/~(x)p2 

Because the sum of the ]/-functions and the sum of the volume fractions must each equal unity, 
it is easily shown that 

] / ; ( x )  = - ] /~(x)  

hence 

p ' ( x )  = ]/; ( x ) ( p l  - p2)  

Substituting this into [4] yields the following relationship for B(r) 

B(r) - ]/;(x)]/i (x + r)(p, - p2)2 [6] 

where ]/;(x)]/;(x+ r) shall be referred to as the ]/-correlation. Note that in the limit of zero 
separation distance (i.e. r = 0) the ]/-correlation reduces to 

]/;(x)]/;(x) = ~, ~ 

making it consistent with [5]. 

Relationship Between the fl-Correlation and RDF 
The RDF (also called the pair correlation function) is a quantity used in statistical mechanics 

to describe the distribution of particle centers relative to a fixed particle (see, for example, 
McQuarrie 1976 or Munster 1974). The RDF for a monodisperse collection of spheres of radius 
o will be designated by g(r), where r is the separation distance. It is convenient to define two related 
quantities, 

and 

h(r) -=g(r) - 1 

y(r) -= exp{ ~Hs/k T}g(r ) 

where ~'as is the hard-spbere potential 

¢.s(Ir,) {O 'r' <o" 
~-~ = i r l > _ ,  o. 

For a particular arrangement, the fluctuation in the ]/-function is by definition 
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I~ r 

Figure 2. Schematic of the overlap volume used to define the Overlap function I(r). The overlap volume 
V' (area in two dimensions) is the cross-hatched volume of intersection of two spheres whose centers are 
separated by a distance r. At r = 0, the overlap volume reduces to Vp and for r > a, the overlap volume 

is zero. 

Substituting into the fl-correlation yields 

fl'l(x)fl~(x+r)=e~--el i~=l n - - I x - - x , [  --~l  ~=, H - I x + r - x A  

~-i=lj=ln(2-lx-xil)n(2-Jx-~-r-xj l) 
The second and third terms on the right-hand side involve averages of  isolated fl-functions, which 
are equal to ~tl. For a homogeneous system the volume fractions are uniform, hence the 

fl-correlation can be reduced to 

Assuming the particles are indistinguishable, the last correlation on the right-hand side can be 
further decomposed into two contributions, one for correlations within a single particle (i.e. i = j ,  
intra-particle), and one for correlations between two particles (i.e. i # j ,  inter-particle). The result 

is 

x x+ .  x )  

x x+ .  x . )  [7] 

The second term on the right-hand side of  the above equation represents the probability that the 
points x and x + r both lie within a single particle, while the third term is the probability that the 
points x and x + r lie with two particles. The first correlation is a function of the particle geometry 
only, while the second also depends on the relative location of  particles (i.e. on the RDF). 

The first expectation (second term on the right hand side) shown in [7] can be re-expressed in 
terms of  a geometric function I(r) that characterizes the expectation that a single line of  length 
r will be wholly contained within a single particle. The function is referred to as the Overlap 
function, and is depicted schematically in figure 2. The Overlap function is defined as the volume 
(area in 2D) of  overlap between two spheres (circles) separated by a distance r. By definition, the 
Overlap function must be the volume (area) of  the particle for r = 0 and must equal zero for r />  (7. 
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The functional form can be determined by considering the volumes of  rotation of  the intersecting 
curves. In two and three dimensions, respectively, the relationships for l(r) are 

I [  () ,/ (;),]r I c o s - ' [  - /  1 -  - < l  
r [8] 
- > 1  
O" 

fl ,It)3 r 
I3D(r) = V v - - 2 a  + 5  

r 
- > 1  
(7 

[9] 

where Vp is the volume of the particle and Ap is the equivalent area of  the particle in two dimensions. 
Any further references to the Overlap function would imply the 3D function, unless stated 
otherwise. 

Referring back to [7], the first expectation is related to I(r) in the following manner 

N H ( 2 - l x - x , l ) H ( i - l x + r - x , I ) =  ~'I(Ir[) 
v. 

It is noteworthy that the intra-particle contribution is a function of the magnitude of  r only, 
reflecting the fact that spherical particles are inherently isotropic. The second expectation (third 
term on the right-hand side of  [7]) is the probability that a particular line segment r lies within two 
different particles. This quantity requires some information about the spatial location of  the 
particles, which is provided by the RDF.  The mathematical relationship between the two-point 
expectation and the R D F  is as follows 

N(N-  I)H - [ x - x t [  H - I x + r - x 2 l  = g (z ) I ( [ r -z [ )dz  

The above equation combined with [8] and [9] provide an exact representation of  the 
fl-correlation (and the density autocorrelation) in terms of the RDF. The pieces can be combined 
in a more compact form by recognizing 

v / ( I r -  zl) dz = g~ 

and that h(r)= g(r)-  1. Introducing these simplifications yields 

"' 
fl', (x)fl~(x + r) = ~pp I(Ir l)  + h(z)I([ r -  z l )dz  [10] 

It is customary in turbulence analysis to consider the Fourier transform of two-point correlations 
because it often provides greater insight into the important length scales within the system. 
Moreover, the transform of the density autocorrelation is perhaps simpler to interpret because the 
convolution integral is converted into a simple product. Transforming [10] with respect to r yields 

13;~', = ~' i(k) 1 + nQk) [ll] 
V. . / 

where the superscript ^ refers to the three-dimensional Fourier transform. The three-dimensional 
transform of I(r) is 

2 

I / "  ka cos -~- - 2 sin 
I ( k ) =  12Vp ~-a-~3 [12] 

IJMF 20/6---D 
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Thus far, the only assumption implied in [8]-[12] is homogeneity, otherwise the relationships are 
exact. 

The remaining unknown in the above expression is the RDF, which in general is a function of 
the particle size, the concentration of particles and characteristics of the turbulent suspending fluid. 
The RDF can be found, in general, from careful experiment or simulation, however for the 
purposes of this demonstration we have elected to use a RDF valid for a hard sphere gas. An 
approximate equation for the RDF was developed by Percus & Yevick (1958). The PY RDF 
neglects the effects the surrounding fluid has on the particle distribution. The results we present, 
therefore, are most valid for gas-solid systems as suggested by a recent paper (Dasgupta et al. 1994). 
Furthermore at low particle loadings, the contribution from the RDF is also negligible. Intermedi- 
ate loadings, particularly with systems that exhibit strongly inhomogeneous particle concentrations 
(Squires & Eaton 1991) requires a more careful study of the RDF. We encourage experimentalists 
and simulators to measure this critical function. 

The PY equation is an approximate integral equation for the RDF of an isotropic hard sphere 
system. An exact analytical solution for the PY equation is available in the literature (Smith & 
Henderson 1970) including corrections for discrepancies with simulation data at small r (Verlet & 
Weis 1972) and an asymptotic form for large r (Perry & Throop 1972). The RDF along with its 
Fourier transform have been incorporated into the expressions we derived for the density 
autocorrelation. 

Density Autocorrelation in an Isotropic System 
It is convenient to consider the equations in a suitably dimensionless form. The variables in [6], 

[10] and [11] can be made dimensionless in the following manner 

B(r) B(k) r* = -,r z* = -,z k* = ka, B*(r) = B*(k) = 
O" O" ( P l  - -  P2) 2' ( P l  - -  p2)2Vp 

Note, the superscript * has been suppressed in the figures and the equations that follow for 
convenience. Furthermore, the equations for B(r) and B(k) can be simplified because the PY RDF 
is valid for an isotropic system only, hence the RDF is a function of I r l  only. Upon performing 
the solid angle integration analytically, the equation for the three-dimensional isotropic density 
autocorrelation in dimensionless form is given by 

[1--{r+½r3 r<<.l t r+l [~ B(r) = ~, + 6 ~  h(z) - ( r - z ) 2 + l ( r - z ) 3 1  [(r - z)51l 
10 r>l  7~ j , _ ,  ~ jz  

dz [13] 

Substituting the PY approximation for h(z) above yields the density autocorrelation as a function 
of r. 

The dimensionless density autocorrelation in physical and transform space are functions of only 
a single parameter, the particle volume fraction ~ .  The particle volume fraction can be 
approximately related to the mean separation distance between the particles, as shown below 

2 =(2a--12~ '13 

where 2 is the dimensionless separation 
diameter a). The range of 2 is 1 ~< ). < ~ .  
density correlation are worth noting. First the 
(see [5]) 

distance (made dimensionless by the particle 
Two additional characteristics of the two-point 
maximum in B(r) occurs at r = 0, and is given by 

B(r = O) = oq oh 
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The second characteristic is an integral constraint on B(r). The integral of  B(r) over all space is 
by definition 

~ B(r)dr=~ v 

= j~ ; (x) f j~; (x + r) dr 
J v 

= 0  

The right-hand side vanishes because integration of a fluctuating quantity in a homogeneous system 
is equivalent to averaging, and fl'l (x + r) = 0. Likewise from the definition of the Fourier transform, 
this implies tha t /~ (k  = 0 ) =  0. 

To test the validity of  [13], a numerical simulation in two dimensions was developed to calculate 
the spectrum directly. Particles were randomly placed on a two-dimensional square such that no 
two particles overlapped (i.e. hard spheres) and the boundaries were periodic. Once a configuration 
of  spheres was obtained a fine grid of  lines was overlaid, and grid points were colored according 
to whether they were within a particle or fluid. A numerical measurement of  the fl-correlation was 
then obtained by measuring all pairs of  points within the system. The results were binned according 
to the separation distance of  the points, and the process was repeated until a sufficient statistical 
sampling was achieved (typically 100 times). Figure 3 shows a comparison between a numerically 
determined B(r) and one determined from the two-dimensional equivalent of  [13], and a 
numerically determined RDF.  The comparison shows excellent agreement. 

Figure 4(a) shows the three-dimensional density autocorrelation in physical space for several 
particle concentrations. In all cases the curves begin at their respective values of  a~ 0~ 2 and decrease 
towards the first minimum which occurs approximately at r = 1. From [13] it is apparent that 
within the range 0 < r < 1, both the intra-particle and inter-particle correlations are contributing, 
the former decreasing in magnitude with increasing r. At r = 1, the intra-particle contribution 
vanishes as the correlation approaches its minimum (note: the minimum does not necessarily occur 
at exactly r = 1, but usually in that neighborhood). For r > 1, the density autocorrelation is solely 
a function of the inter-particle interactions, which are characterized by the mean separation 
distance 2. The physical significance of 2 is demonstrated in figure 4(b), which shows an expanded 
view of the region containing the second maximum. Notice that with increasing particle 
concentration 

Table 1. Relationships for several common higher-order spectral moments in terms of the/I-correlation 
for the ideal case of uniform interpenetration of the particulate and fluid phases. The second column 
indicates the relationship with the fl-correlation and the third column contains a re-expression of the 
second in terms of lower-order moments (taking advantage of the relationships shown in the first three 

rows). Tensors have been designated by a "=  " subscript 

Higher-order m om en t  Relationship to fl-correlation Re-expression 

(1) B(r) = p 'p"  #~ #;  (P, - P2) 2 

[l~ /~;/~i(p,-p~)~ (2) b(r)=-p,~,~)' 
PIP: 

(3)  A ( r )  = - p ' u '  #~ #~ (p, - p2) ( f i ,  - -  a2) 

(4) p'u'p' p;#;(p,-p:)~(a,-a:)(=,-=~) p \ B -  

! p~ p; (pj - p:)(a, - a:) A(r)b 
(5) - u' 

P PtP2 B 

(6) pCpu"T" p= Cp Tip ; ~; (Pl -- P2)(fit --  ii2) --  ~ C p A ( r )  

al  Pt + ~2P2 

,~'~ ~ ;  PIp2(Ul  - -  f i2)( f i l  - -  U2) A A ( r )  (7) R(r) = pu"u" 
a l p  I -4- eJ2p 2 /~/, 

A A(r)  
(8)  _T_(r) = u 'u"  p ;  p ;  (n, - f i2)( f i  I - 62) B 
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Figure 3. Comparison of an analytical calculation of B(r) from the two-dimensional equivalent of [13] 
and a numerical simulation of the density autoeorrelation in two dimensions. 

(decreasing mean separation distance) the second peak is shifted to the left, indicating a dependence 
on 2. Beyond the second peak the curve continues to oscillate with a wavelength that roughly 
corresponds to 2. Apparently the mean separation distance, 2, characterizes the large r (i.e. r > 1) 
behavior of the density autocorrelation function in physical space. 

The Fourier transform of the density autocorrelation was calculated using [11] and [12], 
combined with the PY expression for/~(k) (note,/~ is a function of the magnitude of k only because 
of isotropy). Figure 5 shows the results for three concentrations of particles. A factor of 4nk  2 has 
been added to be consistent with classical definitions for spectral quantities in turbulence (Batchelor 
1953). Recall that large scales in physical space correspond to small wavenumbers (small k) in 
transform space and vice versa. The location of the first maximum is a strong function of the 
particle concentration, once again reflecting the effect of the mean separation distance. The effect 
of the separation distance on the location of subsequent local maxima, however, is diminished, 
because large k behavior is principally characterized by the size and shape of the individual spheres 
themselves, and not on their relative locations. This is apparent from [11]. nO(k) is a positive definite 
oscillating function with an amplitude that decreases with increasing k. A characteristic 
wavenumber, kmax, therefore can be defined such that for k > k . . . .  ~1 f l (k)/ l ip ,~ 1, hence the large 
k limit of the/~-correlation is 

A 

lim fl'~fl~ .~, a , i ( k  ) [14] 
k~oo  

In practical terms the above limit is reached beyond the first peak in the curve. Since i(k) is a 
geometric function that depends on the shape of the particles only, spatial information that 
characterizes the relative location of the particles must be contained within the first peak. This is 
apparent in the particle concentration dependence shown in figure 5. As the mean separation 
distance increases (particle concentration decreases) the first local maximum is seen to shift toward 
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small k, again in accordance with an increasing characteristic scale. Subsequent peaks do not shift 
because of  the constraint imposed by [14]. 

E X T E N S I O N  T O  H I G H L Y  D R I V E N  F L O W S  

Multiphase turbulence models implicitly assume that the dynamics of the particulate system are 
closely related to single-phase systems, and therefore turbulent energies and dissipation rates can 
be represented by turbulent models that are structured along the lines of single phase models. 
Perhaps the single most important distinguishing feature of a particulate system is that particles 
in the presence of a mean pressure gradient move relative to the fluid due to buoyancy forces. This 
phenomenon is presently not included in most turbulence models (a notable exception is the Bray, 
Moss & Libby combustion model--Bray & Moss 1977; Libby & Bray 1981). Furthermore it is 
reasonable to assume that such effects will play an important role in the spectral dynamics of the 
system as well. The present analysis investigates this effect by considering a limiting solution for 
a particulate system experiencing an asymptotically large acceleration (or equivalently an asymp- 
totically large body force). The present analysis can be thought of as the pressure analog of Rapid 
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Figure 4. (a) Density autocorrelation in physical space at different particle concentrations and (b) 
expanded view. rm, ~ denotes the position of  the second maximum. Note the shift of  the second maximum 

to smaller r as concentration increases. 
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Figure 5. Density autocorrelation in transform space at three representative particle concentrations. 
Notice the shift of the first peak to larger wavenumbers with increasing concentration corresponding to 

the decreasing mean separation distance. 

Distortion Theory used in incompressible shear flows to understand the effect of an asymptotically 
large mean velocity gradient on the Reynolds stress• Physically one can approximate this condition 
in a detonation experiment in which the generated shock wave temporarily produces a very large 
pressure gradient• However the primary motivation for the analysis is theoretical because it allows 
us to isolate the effects of  buoyancy from other effects• 

A pressure gradient in a particle-laden system will accelerate the particles and fluid at different 
rates because of the density difference. As a result, relative motion between the fluid phase and 
the particulate phase will ensue. For  short times, it is reasonable to assume that the particle 
velocities are everywhere uniform and equal to fit while the fluid velocity is also uniform and equal 
to u2 = -cq  UI/0~2 (we assume a uniform particle volume fraction and a mean velocity, fi, equal to 
zero). The present analysis shall further assume the pressure-induced velocity is large as compared 
to the turbulent velocity fluctuations (root mean square) of either the particulate or fluid phases. 

Relationships for Higher-order Moments 
In the analysis for the density autocorrelation, the quantity that distinguished the particulate 

phase from the fluid was the density• Because the density is uniform over each phase, the 
contribution from each particle in the system was accounted for by a simple convolution integral. 
In this case, the assumption of  a uniform velocity over each phase allows the same simplification 
to be applied, resulting in simple analytic expressions for several higher-order moments• For 
example, the velocity fluctuations in this hypothetical flow are given by, 

u'(x) =/~'t (x ) ( f ,  - f2)  

n 'e ( X )  = ]~ ¢1' ( X )  ( n l  - -  U2)  

With the aid of these relationships it is possible to construct table 1, a compilation of higher-order 
moments involving the velocity and their relationships to the fl-correlation. The moments were 



SPECTRUM OF DENSITY FLUCTUATIONS--I 1033 

selected on the basis of their relevance to spectral descriptions of more general variable-density 
flows (Clark & Spitz 1994). Column 2 shows the relationship between the higher-order moment 
and the E-correlation. Column 3 is then a re-expression of column 2 in terms of a select subset 
of variables ~,  b, A(r) and B(r)]. The relationships in column 3 imply a reduction in the order of 
the terms that is in every sense analogous to the one seen with the density, reflecting the simplicity 
of the velocity field. Moreover the shape of spectra considered (if properly normalized) collapse 
together into a single curve. This unusual result is not true in general, but is a characteristic of 
the asymptotic limit. Indeed the shape of the density autocorrelation in a variable-density system 
that mixes microscopically must deviate from the Reynolds stress at large wavenumbers (Clark & 
Spitz 1994). It therefore appears that the collapse of the spectra is a distinguishing feature of flows 
that are strongly driven. 

Breakdown of  Ordered Interpenetration 

It is well known that a particle assembly subjected to a uniform pressure gradient will eventually 
become unstable, degrading some of the mean-flow energy into turbulent fluctuations within both 
fields. One mechanism for this breakdown is the wake left behind each particle as it moves through 
the surrounding fluid, which directly produces turbulent fluctuations in the fluid phase, and 
indirectly produces them in the particulate phase as a particle passes into the wake left by a previous 
particle. This mechanism would produce a fluctuating component of velocity in each phase on the 
scale of the particle size. Though this mechanism can be important in some flows, it is not the only 
one. A recent paper by Kim et al. (1993) demonstrated that relative motion between the particulate 
and fluid phases induces an attractive hydrodynamic potential between the particles. The potential 
arises from a lift force that is enhanced between the particles due to a Bernoulli effect. Figure 6 
is a schematic of the streamlines for uniform flow around two spheres. It is apparent that the 
streamlines passing between the particles are converging, corresponding to an increase in the fluid 
velocity relative to the unobstructed side. This non-uniform velocity distribution induces a pressure 
distribution on the sphere that results in an attractive force between the particles. An approximate 

F , a . ~  e - - - - . - ~  

l l l t l l  

I 

l U 

Figure 6. Schematic of the streamlines for potential flow around two spheres of diameter a, separated 
by a distance c. The convergence of streamlines on the inner hemispheres relative to the outer ones creates 
a lower pressure, thereby generating an attractive force between the particles. The resulting potential 

decays as l / c  2 for large c. 
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form for that potential has been found from the inviscid flow solution for flow around two spheres 
(Lamb 1945). Inviseid flow was considered because we are interested in large relative velocities (i.e. 
large Reynolds numbers). The hydrodynamic potential has been determined to be of the following 
form 

27 P2 U 2 1  
~kHp -- 1024n Pl r2 

where r refers to the dimensionless separation distance between the centers of the particles (the 
superscript * has again been suppressed) and U is the relative velocity between the particles and 
fluid (U = Ifil - fi2l). 

Let us define the energy of the particle fluctuations per unit mass as q. The above analysis for 
the interpenetrating system assumed q ,~ U 2. To simplify the analysis for the hydrodynamic effect, 
we further assume that P2/Pl a 1 (e.g. a gas-solid system) such that P2 U2/(P~ q) '~ 1. This implies 
the hydrodynamic force imparts a weak force on the particulate phase, allowing us to seek a 
perturbation solution for the PY equation. On this basis we define the modified non-dimensional 
potential for the hard sphere system of particles as 

~(r~) --~llH~r) w ~lH~(r)--{ °O - -~  r >~ < l 

where ~b is the total potential, ~kHs is the hard RDF potential, ~HP is the contribution from the 
hydrodynamic potential and E is a small parameter defined as 

27 P2 U2 
E - -  - -  

1024n Pl q 

g(r) is assumed to have the following form, 

g(r) = go(r) + Egl (r) + E2g2(r) + . . .  

where go(r) is the pure hard sphere RDF, and g,(r), g2(r), etc., are higher-order corrections. 
Substituting this into the modified PY equation, matching terms of order E, transforming and 
rearranging yields the following equation for ~](k), the first order correction to the spectral 
RDF 

A A 

= - l + M 0  * f l + h 0 *  + [15] 

where H(k) is the transform of the Heaviside function, and * refers to a convolution integral. This 
linear integral equation was solved numerically using a gaussian quadrature with 1000 grid points. 

The solution for o61 (k) was incorporated into the formula for the density autocorrelation to give 
a correction term of order E. The perturbation expansion for the modified density autocorrelation 
(in transform space) will likewise be given by 

B(k) =/~0(k) + E/~I (k) + . . .  [16] 

Figure 7 shows a comparison between the solution for the hard-sphere system, /~0(k), and the 
correction term/~l(k). Notice that the correction term introduces a peak in the spectrum that is 
located at smaller k (larger scale) than the first peak in /~0(k) at the expense of the spectrum at 
larger k. The effect of the hydrodynamic force is therefore to redistribute the spectrum toward small 
k. A physical explanation for this is particles experiencing a long-range attractive potential tend 
to clump together, thereby creating particle clusters that have a much larger effective radius. The 
particle clusters excite smaller wavenumbers leading to the observed shift in the first peak toward 
smaller k. Once again the effect is predominantly limited to the first couple of maxima, reflecting 
the diminished effect of the particle distribution on the large k behavior. The relative motion 
apparently provides an alternative mechanism for growth in the integral scale of a particle 
assembly. 
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Figure 7. Comparison between the three-dimensional density autocorrelation for the purely hard sphere 
fluid, 4nk2~o(k), with the correction term for particles with a long-range attractive potential, 4nk 2B t (k) 
(scaled by a factor of 20). Notice how the correction term will create a shift in the location of the maximum 
toward small k (i.e. large scale). This is perhaps a new mechanism for growth in the length scale in 

particle-fluid turbulence. 

CONCLUSIONS 

A methodology for analyzing the spectrum of a particle-fluid system has been presented with 
particular emphasis on describing the density autocorrelation. The analysis considered the 
particle-fluid system to be a single pseudo-fluid with density fluctuations occurring at particle 
boundaries. This enabled two-point correlations to be defined in a manner that is analogous to 
those in single-fluid systems. Correlations were then derived by simply accounting for all possible 
combinations of two-point particle-fluid interactions (i.e. particle-particle, particle--fluid and 
fluid-fluid). For the case of density (or any variable that is uniform within each phase), the 
correlations can be expressed in terms of the fl-correlation. The fl-correlation was then related to 
two fundamental quantities that characterize the particle-fluid system, the Overlap function which 
is a function of the shape of the particles (spheres in this example), and the RDF which defines 
the particle configuration. An analytical expression for the Overlap function for spherical particles 
(in physical and transform space) was derived. This combined with the PY approximation for the 
RDF enabled us to calculate the two-point density autocorrelation in physical space and transform 
space. The PY RDF, though not exact for a turbulent particle-fluid system, demonstrated 
important trends in the density autocorrelation. The manifestation of the dimensionless mean 
separation distance (the only length scale in the dimensionless equation) on both the physical space 
and transform space density autocorrelations was clearly identified. In physical space, the 
oscillations in the spectrum occurred at a scale closely related to the mean separation distance. In 
contrast, the spatial information of the particle arrangement was contained solely in the first peak 
in transform space, while the remaining peaks were more closely related to the Overlap function. 

The analysis was extended to a closely related dynamic system. Particles experiencing a strong 
uniform pressure gradient will accelerate relative to the fluid because of their difference in density. 
The result will be a brief period of nearly uniform motion of particles relative to fluid. The 
simplicity of the idealized velocity field in this circumstance allowed the analysis for the density 
fluctuation to be extended to higher-order moments, including the Reynolds stress. One surprising 
result is that the spectral shape of virtually all moments become identical to the density 
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autocorrelation spectrum in this limit, perhaps providing a distinguishing feature for this type of 
flow. It was pointed out that the uniform flow will eventually become unstable, generating 
turbulence in the more traditional sense. A qualitative accounting of this instability was found by 
superimposing on the hard sphere potential a small hydrodynamic attractive potential. Based on 
the assumption of inviscid flow around the spheres, the hydrodynamic potential decayed like I/r 2. 
Using a perturbation technique, the effect of the hydrodynamic force was seen to shift the density 
spectrum toward small k (i.e. toward large scale), apparently providing an alternative mechanism 
for growth in the integral scale of a particle-fluid system subjected to a large mean pressure 
gradient. 

The approach described in this paper provides a methodology for calculating spectra in the 
particle-fluid system that is consistent with that for a pure fluid, allowing for a more meaningful 
comparison between the two. Our current effort is towards generalizing the results found for the 
density spectrum to the other important moments using direct numerical simulation data. By 
measuring quantities such as the RDF and various particle velocity correlations, and utilizing the 
relationships developed in this paper, it will be possible to determine all spectral quantities of 
interest. 
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